4.8 Article

Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms

期刊

NATURE
卷 416, 期 6878, 页码 337-340

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/416337a

关键词

-

向作者/读者索取更多资源

Subcellular localization of nitric oxide (NO) synthases with effector molecules is an important regulatory mechanism for NO signalling(1). In the heart, NO inhibits L-type Ca2+ channels 2 but stimulates sarcoplasmic reticulum (SR) Ca2+ release(3-5), leading to variable effects on myocardial contractility. Here we show that spatial confinement of specific NO synthase isoforms regulates this process. Endothelial NO synthase (NOS3) localizes to caveolae(6-8), where compartmentalization with beta-adrenergic receptors and L-type Ca2+ channels(9) allows NO to inhibit beta-adrenergic-induced inotropy(8,10). Neuronal NO synthase (NOS1), however, is targeted to cardiac SR11. NO stimulation of SR Ca2+ release via the ryanodine receptor (RyR) in vitro(3,4) suggests that NOS1 has an opposite, facilitative effect on contractility. We demonstrate that NOS1-deficient mice have suppressed inotropic response, whereas NOS3-deficient mice have enhanced contractility, owing to corresponding changes in SR Ca2+ release. Both NOS1(-/-) and NOS3(-/-) mice develop age-related hypertrophy, although only NOS3(-/-) mice are hypertensive. NOS1/3(-/-) double knockout mice have suppressed beta-adrenergic responses and an additive phenotype of marked ventricular remodelling. Thus, NOS1 and NOS3 mediate independent, and in some cases opposite, effects on cardiac structure and function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据