4.8 Article

Synaptic strength regulated by palmitate cycling on PSD-95

期刊

CELL
卷 108, 期 6, 页码 849-863

出版社

CELL PRESS
DOI: 10.1016/S0092-8674(02)00683-9

关键词

-

向作者/读者索取更多资源

Dynamic regulation of AMPA-type glutamate receptors represents a primary mechanism for controlling synaptic strength, though mechanisms for this process are poorly understood. The palmitoylated postsynaptic density protein, PSD-95, regulates synaptic plasticity and associates with the AMPA receptor trafficking protein, stargazin. Here, we identify palmitate cycling on PSD-95 at the synapse and find that palmitate turnover on PSD-95 is regulated by glutamate receptor activity. Acutely blocking palmitoylation disperses synaptic clusters of PSD-95 and causes a selective loss of synaptic AMPA receptors. We also find that rapid glutamate-mediated AMPA receptor internalization requires depalmitoylation of PSD-95. In a nonneuronal model system, clustering of PSD-95 stargazin, and AMPA receptors is also regulated by ongoing palmitoylation of PSD-95 at the plasma membrane. These studies suggest that palmitate cycling on PSD-95 can regulate synaptic strength and regulates aspects of activity-dependent plasticity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据