4.6 Article

Intracellular sensing of amino acids in Xenopus laevis oocytes stimulates p70 S6 kinase in a target of rapamycin-dependent manner

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 12, 页码 9952-9957

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M107694200

关键词

-

向作者/读者索取更多资源

Amino acids exert modulatory effects on proteins involved in control of mRNA translation in animal cells through the target of rapamycin (TOR) signaling pathway. Here we use oocytes of Xenopus laevis to investigate mechanisms by which amino acids are sensed in animal cells. Small (similar to48%) but physiologically relevant increases in intracellular but not extracellular total amino acid concentration (or Leu or Trp but not Ala, Glu, or Gln alone) resulted in increased phosphorylation of p70(S6K) and its substrate ribosomal protein S6. This response was inhibited by rapamycin, demonstrating that the effects require the TOR pathway. Alcohols of active amino acids substituted for amino acids with lower efficiency. Oocytes were refractory to changes in external amino acid concentration unless surface permeability of the cell to amino acids was increased by overexpression of the System L amino acid transporter. Amino acid-induced, rapamycin-sensitive activation of p70(S6K) was conferred when System L-expressing oocytes were incubated in extracellular amino acids, supporting intracellular localization of the putative amino acid sensor. In contrast to lower eukaryotes such as yeast, which possess an extracellular amino acid sensor, our findings provide the first direct evidence for an intracellular location for the putative amino acid sensor in animal cells that signals increased amino acid availability to TOR/p70(S6K).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据