4.7 Article

An integrated effective fragment-polarizable continuum approach to solvation: Theory and application to glycine

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 116, 期 12, 页码 5023-5032

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1433503

关键词

-

向作者/读者索取更多资源

A new discrete/continuum solvation model has been developed by combining the effective fragment potential (EFP) for the discrete part and the polarizable continuum model (PCM) for the continuum part. The usefulness of this model is demonstrated by applying it to the calculation of the relative energies of the neutral and zwitterionic forms of glycine. These calculations were performed by treating glycine with ab initio wave functions. Water clusters were treated with both ab initio and EFP methods for comparison purposes, and the effect of the continuum was accounted for by the PCM model. The energy barrier connecting the zwitterionic and neutral three-water clusters was also examined. The computationally efficient EFP/PCM model gives results that are in close agreement with the much more expensive full ab initio/PCM calculation. The use of methods that account for electron correlation is necessary to obtain accurate relative energies for the isomers of glycine. (C) 2002 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据