4.8 Article

p53 and recombination intermediates:: role of tetramerization at DNA junctions in complex formation and exonucleolytic degradation

期刊

ONCOGENE
卷 21, 期 14, 页码 2130-2140

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1205292

关键词

exonuclease; genomic stability; mispairing; oligomerization; protein-DNA complex formation; tumor suppressor

向作者/读者索取更多资源

Heteroduplex joints represent intermediates of Rad51-dependent recombination processes, which are recognized by p53 with extremely high affinities, in a manner independent of the DNA sequence content. To determine the structural elements required for complex formation, we monitored DNA-binding by protection against restriction endonuclease cleavage. We show that wild-type (wt) p53 interacts with heteroduplex joints in the proximity of the flexible junction. Association of p53 within this junction region was also observed with preformed Rad51-heteroduplex complexes, whereas SSB counteracted p53 binding. At a distance of 31 bp from the junction p53 established very few contacts with the heteroduplex, despite the presence of an A - G mismatch. Consistently, p53-dependent exonucleolytic degradation decreased when we raised the distance between the junction and the heteroduplex terminus by 27 bp. Different from the cancer-related mutant p53(273H), which did not recognize the junction, tetramerization defective p53-1262 was protection competent but displayed reduced complex stability in gel shifts. Moreover, p53-1262 performed exonucleolytic activities towards ssDNA like wtp53, but reduced degradation of heteroduplex joints. These results suggest that during recombination wild-type p53, as a tetramer, stably binds to strand transfer regions, enabling the protein to exonucleolytically correct heteroduplex intermediates early after strand invasion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据