4.6 Article

Bcl-2 and Bcl-xL inhibit CD95-mediated apoptosis by preventing mitochondrial release of Smac/DIABLO and subsequent inactivation of X-linked inhibitor-of-apoptosis protein

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 13, 页码 11345-11351

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109893200

关键词

-

向作者/读者索取更多资源

Bcl-2 and Bcl-x(L) are reported to inhibit CD95-mediated apoptosis in type II but not in type I cells. In the present studies, we found that stimulation of CD95 receptors, with either agonistic antibody or CD95 ligand, resulted in the activation of caspase-8, which in turn processed caspase-3 between its large and small subunits. However, in contrast to control cells, those overexpressing either Bcl-2 or Bcl-x(L) displayed a distinctive pattern of caspase-3 processing. Indeed, the resulting p20/p12 caspase-3 was not active and did not undergo normal autocatalytic processing to form p17/p12 caspase-3, because it was bound to and inhibited by endogenous X-linked inhibitor-of-apoptosis protein (XIAP). Importantly, Bcl-2 and Bcl-x(L) inhibited the release of both cytochrome c and Smac from mitochondria. However, since Smac alone was sufficient to promote caspase-3 activity in vitro by inactivating XIAP, we proposed the existence of a death receptor-induced, Smac-dependent and apoptosome-independent pathway. This type II pathway was subsequently reconstituted in vitro using purified recombinant proteins at endogenous concentrations. Thus, mitochondria and associated Bcl-2 and Bcl-x(L) proteins may play a functional role in death receptor-induced apoptosis by modulating the release of Smac. Our data strongly suggest that the relative ratios of XIAP (and other inhibitor-of-apoptosis proteins) to active caspase-3 and Smac may dictate, in part, whether a cell exhibits a type I or type II phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据