4.6 Article

Evidence for a model of agonist-induced activation of 5-hydroxytryptamine 2A serotonin receptors that involves the disruption of a strong ionic interaction between helices 3 and 6

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 13, 页码 11441-11449

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111675200

关键词

-

资金

  1. NIMH NIH HHS [R01MH57635, KO2MH01366] Funding Source: Medline

向作者/读者索取更多资源

5-Hydroxytryptamine 2A (5-HT2A) receptors are essential for the actions of serotonin (5-hydroxytryptamine (5-HT)) on physiological processes as diverse as vascular smooth muscle contraction, platelet aggregation, perception, and emotion. In this study, we investigated the molecular mechanism(s) by which 5-HT activates 5-HT2A receptors using a combination of approaches including site-directed mutagenesis, molecular modeling, and pharmacological analysis using the sensitive, cell-based functional assay R-SAT. Alanine-scanning mutagenesis of residues close to the intracellular end of H6 of the 5-HT2A receptor implicated glutamate Glu-318(6.30) in receptor activation, as also predicted by a newly constructed molecular model of the 5-HT2A receptor, which was based on the x-ray structure of bovine rhodopsin. Close examination of the molecular model suggested that Glu-318(6.30) could form a strong ionic interaction with Arg-173(3.50) of the highly conserved (D/E)RY motif located at the interface between the third transmembrane segment and the second intracellular loop (i2). A direct prediction of this hypothesis, that disrupting this ionic interaction by an E318(6.30)R mutation would lead to a highly constitutively active receptor with enhanced affinity for agonist, was confirmed using R-SAT. Taken together, these results predict that the disruption of a strong ionic interaction between transmembrane helices 3 and 6 of 5-HT2A receptors is essential for agonist-induced receptor activation and, as recently predicted by ourselves (B. L. Roth and D. A. Shapiro (2001) Expert Opin. Ther. Targets 5, 685-695) and others, that this may represent a general mechanism of activation for many, but not all, G-protein-coupled receptors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据