4.6 Article

A slow pH-dependent conformational transition underlies a novel mode of activation of the epithelial Na+/H+ exchanger-3 isoform

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 13, 页码 11090-11096

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111868200

关键词

-

向作者/读者索取更多资源

Allosteric control of Na+/H- exchange by intracellular protons ensures rapid and accurate regulation of the intracellular pH. Although this allosteric effect was heretofore thought to occur almost instantaneously, we report here the occurrence of a slower secondary activation of the epithelial Na+/H- exchanger (NHE)-3 isoform. This slow activation mode developed over the course of minutes and was unique to NHE3 and the closely related isoform NHE5, but was not observed in NHE1 or NHE2. Activation of NHE3 was not due to increased density of exchangers at the cell surface, nor was it accompanied by detectable changes in phosphorylation. The association of NHE3 with the cytoskeleton, assessed by its retention in the detergent-insoluble fraction, was similarly unaffected by acidification. In contrast to the slow progressive activation elicited by acidification, deactivation occurred very rapidly upon restoration of the physiological pH. We propose that NHE3 undergoes a slow pH-dependent transition from a less active to a more active state, likely by changing its conformation or state of association.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据