4.4 Article

Vorticity and circulation: spatial metrics for evaluating flow complexity in stream habitats

期刊

出版社

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/F02-037

关键词

-

向作者/读者索取更多资源

Channel topography, formed by boulders, submerged bars, and meanders, creates complex flow patterns. These flow patterns exist over a variety of spatial scales and provide habitat for many aquatic organisms. Spatial flow features cannot be adequately characterized with qualitative descriptions or hydraulic metrics such as depth and velocity. Two-dimensional hydraulic model simulations, based on detailed channel geometry, are used to develop and test vorticity (a point metric) and a circulation-based metric (an area metric) as means of quantifying spatial flows occurring within micro-, meso-, and macro-habitat features. The proposed spatial metrics are computed throughout distinctly different regions of a study site. The vorticity metric produces small absolute values in uniform flows and large absolute values in complex flows. Circulation metric values varied by a factor of 11.7 within distinctly different regions of the modeled study site and suggest that the metric provides a means of quantifying flow complexity within a study reach or within individual mesoscale habitats such as pools, eddies, riffles, and transverse flows. The circulation metric is used to quantify flow complexity around three brown trout (Salmo trutta) redds to provide an example of how the proposed metric might be employed in habitat studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据