4.7 Article

Diffraction by a small aperture in conical geometry: Application to metal-coated tips used in near-field scanning optical microscopy

期刊

PHYSICAL REVIEW E
卷 65, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.65.046611

关键词

-

向作者/读者索取更多资源

Light diffraction through a subwavelength aperture located at the apex of a metallic screen with conical geometry is investigated theoretically. A method based on a multipole field expansion is developed to solve Maxwell's equations analytically using boundary conditions adapted both for the conical geometry and for the finite conductivity of a real metal. The topological properties of the diffracted field are discussed in detail and compared to those of the field diffracted through a small aperture in a flat screen, i.e., the Bethe problem. The model is applied to coated, conically tapered optical fiber tips that are used in near-field scanning optical microscopy. It is demonstrated that such tips behave over a large portion of space like a simple combination of two effective dipoles located in the apex plane (an electric dipole and a magnetic dipole parallel to the incident fields at the apex) whose exact expressions are determined. However, the large backward emission in the P plane-a salient experimental fact that has remained unexplained so far-is recovered in our analysis, which goes beyond the two-dipole approximation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据