3.8 Article

Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797

期刊

FOOD ADDITIVES AND CONTAMINANTS
卷 19, 期 4, 页码 379-386

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/02652030110091154

关键词

trichothecenes; detoxification; mycotoxin; mass spectrometry

向作者/读者索取更多资源

Contamination of feed with trichothecenes, a group of Fusarium mycotoxins, leads to losses in performance due to their immunosupressive effects and the negative effect on the gastrointestinal system in animal production. A possible way of detoxification is microbial degradation, which was the focus of this study. A bacterial strain-BBSH 797-which can degrade some mycotoxins of the trichothecene group, has already been isolated. It transforms deoxynivalenol (DON) into its metabolite DOM-1, the non-toxic deepoxide of DON. Analogous to the microbial degradation of DON, the transformation of six different type A trichothecenes was observed. The metabolites appearing were characterized by GC-MS after derivatization with TRI-SIL(R)TBT. Two metabolites were additionally identified by liquid chromatography-mass spectrometry with particle beam interface (LC-PB-MS) with electron impact (EI)-ionization mode. The major finding was that scirpentriol was completely transformed into its non-toxic metabolite deepoxy scirpentriol, while the mycotoxin T-2 triol underwent a more complicated metabolism. According to the study, T-2-triol was degraded into its non-toxic deepoxy form and into T-2 tetraol, which was then further metabolized to deepoxy T-2 tetraol. GC-MS after derivatization with TRI-SIL(R)TBT was suitable for the structural characterization of trichothecenes and their degradation products. Besides the mass spectra of already known degradation products, spectra of new metabolites could be recorded by LC-PB-MS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据