4.7 Article Proceedings Paper

N uptake and distribution in crops: an agronomical and ecophysiological perspective

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 53, 期 370, 页码 789-799

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jexbot/53.370.789

关键词

crop development; crop growth; nitrogen assimilation; nitrogen uptake; plant regulation; photosynthesis

向作者/读者索取更多资源

The rate of N uptake of crops is highly variable during crop development and between years and sites. However, under ample soil N availability, crop N accumulation is highly related to crop growth rate an to biomass accumulation. Critical N concentration as been defined as the minimum N concentration which allows maximum growth rate. Critical N concentration declines during crop growth. The relationship between critical N concentration and biomass accumulation over the growth period of a crop is broadly similar within major C-3 and C-4 cultivated species. Therefore, the critical N concentration concept is widely used in agronomy as the basis of the diagnosis of crop N status, and allows discrimination between situations of sub-optimal and supra-optimal N supply. The relationship between N and biomass accumulation in crops, relies on the interregulation of multiple crop physiological processes. Among these processes, N uptake, crop C assimilation and thus growth rate, and C and N allocation between organs and between plants, play a particular role. Under suboptimal N supply, N uptake of the crop depends on soil mineral N availability and distribution, and on root distribution. Under ample N supply, N uptake largely depends on growth rate via internal plant regulation. Carbon assimilation of the crop is related to crop N through the distribution of N between mature leaves with consequences for leaf and canopy photosynthesis. However, although less commonly emphasized, carbon assimilation of the crop also depends on crop N through leaf area development. Therefore, crop growth rate fundamentally relies on the balance of N allocation between growing and mature leaves. Nitrogen uptake and distribution also depends on C allocation between organs and N composition of these organs. Within shoots, allocation of C to stems generally increases in relation to C allocation to the leaves over the crop growth period. Allocation of C and N between shoots and roots also changes to a large extent in relation to soil N and/or crop N. These alterations in C and N allocation between plant organs have implications, together with soil availability and carbon assimilation, on N uptake and distribution in crops. Therefore, N uptake and distribution in plants and crops involves many aspects of growth and development. Regulation of nitrogen assimilation needs to be considered in the context of these interregulatory processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据