4.4 Article

Intrinsic activation of human motoneurons: Possible contribution to motor unit excitation

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 87, 期 4, 页码 1850-1858

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00024.2001

关键词

-

向作者/读者索取更多资源

The main purpose of this study was to estimate the contribution of intrinsic activation of human motoneurons (e. g., by plateau potentials) during voluntary and reflexive muscle contractions. Pairs of motor units were recorded from either the tibialis anterior or soleus muscle during three different conditions: 1) during a brief muscle vibration followed by a slow relaxation of a steady isometric contraction; 2) during a triangular isometric torque contraction; and 3) during passive sinusoidal muscle stretch superimposed on a steady isometric contraction. In each case, the firing rate of a tonically firing control motor unit was used as a measure of the effective synaptic excitation (i.e., synaptic drive) to a slightly higher-threshold test motor unit that was recruited and de-recruited during a contraction trial. The firing rate of the control unit was compared at recruitment and de-recruitment of the test unit. This was done to determine whether the estimated synaptic drive needed to recruit a motor unit was less than the amount needed to sustain firing as a result of an added depolarization produced from intrinsic sources. After test unit recruitment, the firing rate of the control unit could be decreased significantly (on average by 3.6 Hz from an initial recruitment rate of 9.8 Hz) before the test unit was de-recruited during a descending synaptic drive. Similar decreases in control unit rate occurred in all three experimental conditions. This represents a possible 40% reduction in the estimated synaptic drive needed to maintain firing of a motor unit compared with the estimated amount needed to recruit the unit initially. The firing rates of both the control and test units were modulated together in a highly parallel fashion, suggesting that the unit pairs were driven by common synaptic inputs. This tight correlation further validated the use of the control unit firing rate as a monitor of synaptic drive to the test motor unit. The estimates of intrinsically mediated depolarization of human motoneurons (approximate to40% during moderate contractions) are consistent with values obtained for plateau potentials obtained from intracellular recordings of motoneurons in reduced animal preparations, although various alternative mechanisms are discussed. This suggests that similar intrinsic conductances provide a substantial activation of human motoneurons during moderate physiological activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据