4.7 Article

Visualization of peroxisomes in living plant cells reveals acto-myosin-dependent cytoplasmic streaming and peroxisome budding

期刊

PLANT AND CELL PHYSIOLOGY
卷 43, 期 4, 页码 384-392

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcf045

关键词

actin; cytoplasmic streaming; GFP; myosin; peroxisome; phloem

向作者/读者索取更多资源

Here we examine peroxisomes in living plant cells using transgenic Arabidopsis thaliana plants expressing the green fluorescent protein (GFP) fused to the peroxisome targeting signal 1 (PTS1). Using time-lapse laser scanning confocal microscopy we find that plant peroxisomes exhibit fast directional movement with peak velocities approaching 10 mum s(-1). Unlike mammalian peroxisomes which move on microtubules, plant peroxisome movement is dependent on actin microfilaments and myosin motors, since it is blocked by treatment with latrunculin B and butanedione monoxime, respectively. In contrast, microtubule-disrupting drugs have no effect on peroxisome streaming. Peroxisomes were further shown to associate with the actin cytoskeleton by the simultaneous visualization of actin filaments and peroxisomes in living cells using GFP-talin and GFP-PTS1 fusion proteins, respectively. In addition, peroxisome budding was observed, suggesting a possible mechanism of plant peroxisome proliferation. The strong signal associated with the GFP-PTS1 marker also allowed us to survey cytoplasmic streaming in different cell types. Peroxisome movement is most intense in elongated cells and those involved in long distance transport, suggesting that higher plants use cytoplasmic streaming to help transport vesicles and organelles over long distances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据