4.6 Article

Differences of three-dimensional trabecular microstructure in osteopenic rat models caused by ovariectomy and neurectomy

期刊

BONE
卷 30, 期 4, 页码 594-598

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S8756-3282(02)00684-1

关键词

ovariectomy (ovx); neurectomy (nx); microstructure; three-dimensional (3D)

向作者/读者索取更多资源

We investigated the differences in three-dimensional microstructure of bone in cases of osteopenia caused by two different procedures: ovariectomy (ovx) and sciatic neurectomy (nx). Thirty-nine 8-week-old female Lewis rats were divided into two groups: (1) ovx and sham operation; and (2) nx and sham operation. At 12 weeks of age these rats were killed to sample the right tibiae. The samples were scanned using microcomputed tomography to obtain metric parameters such as bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp), and nonmetric parameters such as structure model index (SMI), trabecular bone pattern factor (TBPf), and degree of anisotropy (DA). The changes in all microstructural parameters were significant in both the ovx and nx groups, with those of BV/TV, Tb.Th, Tb.Sp, and SMI more significant in the ovx group than in the nx group, in comparison to their respective controls. The significantly higher coefficient of variance for Tb.Th across the entire analyzed area of the individual samples indicated that the trabecular thinning occurred heterogenously and that the microstructural deterioration induced by ovx and nx appeared to be locally accelerated, so as to induce perforation and disappearance of trabeculae. The DA increased significantly in the ovx rats, whereas it decreased in the nx rats. The appearance of microstructural deterioration differed between the two osteopenic models. The three-dimensional (3D) images from the nx rats showed flake-like trabeculae, whereas the ovx rats exhibited a diffuse disappearance of trabeculae, especially in the central part of the tibia, but with a preservation of shape for those trabeculae that were retained. The reduction in cortical area was more significant in the nx group. nx and ovx resulted in significant changes in bone microstructure, showing perforation and removal of trabeculae due to locally accelerated bone resorption. The 3D microcomputed tomography images demonstrated the different microstructural changes that occurred in the ovx and nx groups. Loading during bone resorption increased the anisotropy, whereas immobilization increased the isotropy. In addition, immobilization had a more significant effect on the cortical area. (Bone 30: 594-598; 2002) (C) 2002 by Elsevier Science Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据