3.8 Article

Modulation of the cardiac pacemaker of Drosophila:: cellular mechanisms

出版社

SPRINGER-VERLAG
DOI: 10.1007/s00360-001-0246-8

关键词

Drosophila; heart; neurotransmitters; receptors

向作者/读者索取更多资源

The myogenic cardiac pacemaker of Drosophila melanogaster responds to a range of neurotransmitters and hormones by adjusting heart rate. These cardioactive substances ultimately affect the activity of ion channels comprising the pacemaker. We report here work utilizing genetic variants and pharmacological tools to explore a subset of possible mechanisms for this cellular signaling, specifically: receptors, cAMP, cGMP, G proteins, and calcium. We found that alpha(1) adrenergic and 5-hydroxytryptamine(2) (5-HT2) receptors are critical components of mediating modulation of heart rate. There was no evidence that the cAMP system is part or the modulatory mechanism. cGMP is likely to be integral to one active pathway, as non-hydrolyzable forms of this cyclic nucleotide increase heart rate, and flies bearing the mutation sitter, a recessive allele of (he foraging gene, which encodes a cGMP-dependent kinase, have tachycardia. Heart rhythm is affected by pertussis toxin and by agonists and antagonists of both alpha(1) adrenergic and 5-HT2 receptors;, this suggests involvement of two different types of G proteins. The 1(4)16/ciD line, containing a mutation in CaM kinase 11, eliminates pacemaker responsiveness to serotonin but is without effect on norepinephrine sensitivity. This result is the same as that for the CaM kinase II enzyme inhibitor KN-93. This work establishes a framework for further investigations into the control of the cardiac pacemaker, and expands the applicability of the Drosophila heart model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据