4.5 Article Proceedings Paper

Electron transport in the dye sensitized nanocrystalline cell

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S1386-9477(02)00384-3

关键词

photovoltaics; nanocrystalline; transport; dye sensititation

向作者/读者索取更多资源

Dye sensitised nanocrystalline solar cells (Gratzel cells) have achieved solar-to-electrical energy conversion efficiencies of 12% in diffuse daylight. The cell is based on a thin film of dye-sensitised nanocrystalline TiO2 interpenetrated by a redox electrolyte. The high surface area of the TiO2 and the spectral characteristics of the dye allow the device to harvest 46% of the solar energy flux. One of the puzzling features of dye-sensitised nanocrystalline solar cells is the slow electron transport in the titanium dioxide phase. The available experimental evidence as well as theoretical considerations suggest that the driving force for electron collection at the substrate contact arises primarily from the concentration gradient, i.e. the contribution of drift is negligible. The transport of electrons has been characterised by small amplitude pulse or intensity modulated illumination. Here, we show how the transport of electrons in the Gratzel cell can be described quantitatively using trap distributions obtained from a novel charge extraction method with a one-dimensional model based on solving the continuity equation for the electron density. For the first time in such a model, a back reaction with the I-3(-) ions in the electrolyte that is second order in the electron density has been included. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据