4.7 Review

Hypoxia and carbon monoxide in the vasculature

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 4, 期 2, 页码 291-299

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/152308602753666343

关键词

-

资金

  1. NHLBI NIH HHS [R01 HL55454, 1P50 HL56398] Funding Source: Medline

向作者/读者索取更多资源

Hypoxia is sensed by all mammalian cells and elicits a variety of adaptive and pathophysiological responses at the molecular and cellular level. For the pulmonary vasculature, hypoxia causes increased vasoconstriction and vessel-wall remodeling. These responses are mediated by complex intracellular cascades leading to altered gene expression and cell-cell interaction. Hypoxia transiently increases the transcriptional rate of the heme oxygenase-1 (HO-1) gene, resulting in increased production of carbon monoxide (CO) and bilirubin. CO has vasodilatory and antiinflammatory properties in the vasculature, whereas bilirubin is an antioxidant. Both enzymatic products could thus modulate the hypoxic cellular response. Accumulating data suggest that CO inhibits the hypoxic induction of genes encoding vasoconstrictors and smooth muscle cell mitogens in the early hypoxic phase. During chronic hypoxia, low CO levels tilt the balance toward increased production of growth factors and vasoconstrictors that promote vessel-wall remodeling. Mice null in the HO-1 gene manifest decreased tolerance to hypoxia with right ventricular dilatation and infarction, whereas targeted lung overexpression of HO-1 prevents hypoxia-induced inflammatory responses and protects against the development of pulmonary hypertension. Such observations point to CO as a critical modulator of the body's adaptive responses to hypoxia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据