4.5 Review

Voltage-sensor control of Ca2+ release in skeletal muscle:: Insights from skinned fibers

期刊

FRONTIERS IN BIOSCIENCE-LANDMARK
卷 7, 期 -, 页码 D834-D842

出版社

FRONTIERS IN BIOSCIENCE INC
DOI: 10.2741/lamb

关键词

cell physiology; skeletal muscle; Ca2+ release; excitation-contraction coupling; skinned fiber; voltage-sensor; review

向作者/读者索取更多资源

Important aspects of the excitation-contraction (EC) coupling process in skeletal muscle have been revealed using mechanically-skinned fibers in which the transverse-tubular system can be depolarized by ion substitution or electrical stimulation, activating the voltage-sensors which in turn open the Ca2+ release channels in the adjacent sarcoplasmic reticulum (SR). Twitch and tetanic force responses elicited in skinned fibers closely resemble those in intact fibers, showing that the coupling mechanism is entirely functional. It was found that ATP has to be bound to the Ca2+ release channels for them to be activated by the voltage-sensors and that the coupling mechanism likely involves the voltage-sensors removing the inhibitory effects of cytoplasmic Mg2+ on the release channels; such findings are relevant to the basis of muscle fatigue and to certain diseases such as malignant hyperthermia (MH). EC coupling is evidently not mediated by upmodulation of Ca2+-induced Ca2+ release (CICR) or by an oxidation or phosphorylation reaction. The Ca2+ load in the SR of skinned fibers can be set at the endogenous level or otherwise. The normal coupling mechanism functions well in mammalian fast-twitch fibers even when the SR is only partially loaded, whereas CICR is highly dependent on SR luminal Ca2+ and caffeine is poorly effective at inducing release at the endogenous SR Ca2+ load level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据