3.9 Article

Knockout of PKCα enhances insulin signaling through PI3K

期刊

MOLECULAR ENDOCRINOLOGY
卷 16, 期 4, 页码 847-858

出版社

OXFORD UNIV PRESS INC
DOI: 10.1210/me.16.4.847

关键词

-

资金

  1. NIDDK NIH HHS [R01 DK065969, R01-DK-38079-11] Funding Source: Medline

向作者/读者索取更多资源

Insulin stimulates glucose transport and certain other metabolic processes by activating atypical PKC isoforms (lambda, zeta, iota) and protein kinase B (PKB) through increases in D3-polyphosphoinositides derived from the action of PI3K. The role of diacylglycerol-sensitive PKC isoforms is less clear as they have been suggested to be both activated by insulin and yet inhibit insulin signaling to PI3K. Presently, we found that insulin signaling to insulin receptor substrate 1-dependent PI3K, PKB, and PKClambda, and downstream processes, glucose transport and activation of ERK, were enhanced in skeletal muscles and adipocytes of mice in which the ubiquitous conventional diacylglycerol-sensitive PKC isoform, PKCalpha, was knocked out by homologous recombination. On the other hand, insulin provoked wortmannin-insensitive increases in immunoprecipitable PKCalpha activity in adipocytes and skeletal muscles of wild-type mice and rats. We conclude that 1) PKCalpha is not required for insulin-stimulated glucose transport, and 2) PKCalpha is activated by insulin at least partly independently of PI3K, and largely serves as a physiological feedback inhibitor of insulin signaling to the insulin receptor substrate 1/PI3K/PKB/PKClambda/zeta/iota complex and dependent metabolic processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据