4.4 Article

D1/D5 dopamine receptors stimulate intracellular calcium release in primary cultures of neocortical and hippocampal neurons

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 87, 期 4, 页码 2167-2175

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00541.2001

关键词

-

资金

  1. NIMH NIH HHS [MH-56608, R01 MH063271, P50 MH068789, MH-63271] Funding Source: Medline

向作者/读者索取更多资源

D1/D5 dopamine receptors in basal ganglia, hippocampus, and cerebral cortex modulate motor, reward, and cognitive behavior. Previous work with recombinant proteins revealed that in cells primed with heterologous G(q/11)-coupled G-protein-coupled receptor (GPCR) agonists, the typically G(s)-linked D1/D5 receptors can stimulate robust release of calcium from internal stores when coexpressed with calcyon. To learn more about the intracellular signaling mechanisms underlying these D1/D5 receptor regulated behaviors, we explored the possibility that endogenous receptors stimulate internal release of calcium in neurons. We have identified a population of neurons in primary cultures of hippocampus and neocortex that respond to D1/D5 dopamine receptor agonists with a marked increase in intracellular calcium (Ca-i(2+)) levels. The D1/D5 receptor stimulated responses occurred in the absence of extracellular Ca2+ indicating the rises in Ca-i(2+) involve release from internal stores. In addition, the responses were blocked by D1/D5 receptor antagonists. Further, the D1/D5 agonist-evoked responses were state dependent, requiring priming with agonists of G(q/11)-coupled glutamate, serotonin, muscarinic, and adrenergic receptors or with high external K+ solution. In contrast, D1/D5 receptor agonist-evoked Ca2+ responses were not detected in neurons derived from striatum. However, D1/D5 agonists elevated cAMP levels in striatal cultures as effectively as in neocortical and hippocampal cultures. Further, neither forskolin nor 8-Br-cAMP stimulation following priming was able to mimic the D1/D5 agonist-evoked Ca2+ response in neocortical neurons indicating that increased cAMP levels are not sufficient to stimulate Ca-i(2+) release. Our data suggest that D1-like dopamine receptors likely modulate neocortical and hippocampal neuronal excitability and synaptic function via Ca2+ as well as cAMP-dependent signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据