3.8 Article

Engineering protein and cell adhesivity using PEO-terminated triblock polymers

期刊

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH
卷 60, 期 1, 页码 126-134

出版社

WILEY
DOI: 10.1002/jbm.10005

关键词

micropatterning; poly(ethylene oxide); poly(ethylene glycol); microfluidics; cell engineering; cell adhesion

向作者/读者索取更多资源

Previous studies on customizing cell culture environments have utilized a variety of microfabrication-based took to control the spatial localization of adhesive proteins and subsequently mammalian cells. Others have used various methods to immobilize nonadhesive PEO-based polymers on surfaces to inhibit protein absorption and cell adhesion. In this study, we report the application of a well-characterized, commercially available, PEO-terminated triblock polymer (Pluronic(TM) F108) to create micropatterned nonadhesive domains on a variety of biomaterials that deter cell adhesion for up to 4 weeks in culture. The Pluronic can be applied using microfluidic tools or photolithographic techniques, and can be adsorbed to a variety of common surfaces including tissue culture polystyrene, methylated glass, silicone, and polylactic-co-glycolic acid. The effectiveness of the Pluronic in inhibiting cell adhesion in the presence of collagen I is also quantified. Finally, these patterning techniques are generalized to control tissue organization on a variety of common biomaterials. This simple method for micropatterning PEO and, therefore, proteins and cells should prove useful as a tool for biomolecular surface engineering. (C) 2002 John Wiley Sons, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据