4.7 Article

A computational study of the thermal ionization of soot particles and its effect on their growth in laminar premixed flames

期刊

COMBUSTION AND FLAME
卷 129, 期 1-2, 页码 204-216

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0010-2180(02)00344-9

关键词

-

向作者/读者索取更多资源

The effect of thermal ionization on the growth of soot particles has been analyzed by detailed kinetic modeling of a low-pressure premixed acetylene flame. The detailed kinetic model considers the oxidation of fuel, the formation and growth of polycyclic aromatic hydrocarbons, and particle inception, coagulation, as well as mass growth via surface reactions. A numerical method has been developed, which considers the production of charged particles by thermal ionization as well as coagulation and surface reactions of these particles. The enhancement of coagulation by collisions between charged-charged and charged-neutral particles is rigorously accounted for in the numerical model. The particle size distribution functions for both neutral and charged particles were solved using the method of moments. The computed relative soot volume fractions for neutral and charged soot particles were compared to measurements and found to be in good agreement with them. The results show also that omitting of thermal ionization of soot particles does not lead to significant errors in the simulation of soot formation in the acetylene flame, as long as the nature of the surface reactions between charged particles and gaseous molecules remains the same as that for neutral particles. This result can be generalized to most laboratory laminar premixed and counterflow diffusion flames with flame temperatures not exceeding 2100 K. (C) 2002 by The Combustion Institute.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据