4.5 Article

The biochemical kinetics underlying actin movement generated by one and many skeletal muscle myosin molecules

期刊

BIOPHYSICAL JOURNAL
卷 82, 期 4, 页码 2134-2147

出版社

CELL PRESS
DOI: 10.1016/S0006-3495(02)75560-4

关键词

-

资金

  1. NHLBI NIH HHS [HL07647, HL59408] Funding Source: Medline
  2. NIAMS NIH HHS [AR47906] Funding Source: Medline

向作者/读者索取更多资源

To better understand how skeletal muscle myosin molecules move actin filaments, we determine the motion-generating biochemistry of a single myosin molecule and study how it scales with the motion-generating biochemistry of an ensemble of myosin molecules. First, by measuring the effects of various ligands (ATP, ADP, and P-i) on event lifetimes, tau(on), in a laser trap, we determine the biochemical kinetics underlying the stepwise movement of an actin filament generated by a single myosin molecule. Next, by measuring the effects of these same ligands on actin velocities, V, in an in vitro motility assay, we determine the biochemistry underlying the continuous movement of an actin filament generated by an ensemble of myosin molecules. The observed effects of P-i on single molecule mechanochemistry indicate that motion generation by a single myosin molecule is closely associated with actin-induced P-i dissociation. We obtain additional evidence for this relationship by measuring changes in single molecule mechanochemistry caused by a smooth muscle HMM mutation that results in a reduced beta-release rate. In contrast, we observe that motion generation by an ensemble of myosin molecules is limited by ATIP-induced actin dissociation (i.e., V varies as 1/tau(on)) at low [ATP], but deviates from this relationship at high [ATP]. The single-molecule data uniquely provide a direct measure of the fundamental mechanochemistry of the actomyosin ATPase reaction under a minimal load and serve as a clear basis for a model of ensemble motility in which actin-attached myosin molecules impose a load.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据