4.5 Article

Identification of mechanically induced genes in human monocytic cells by DNA microarrays

期刊

JOURNAL OF HYPERTENSION
卷 20, 期 4, 页码 685-691

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/00004872-200204000-00026

关键词

atherosclerosis; cytokines; gene expression; hypertension; macrophages

向作者/读者索取更多资源

Background Hypertension is a risk factor for coronary heart disease. Macrophages are critically involved in both atherogenesis and plaque instability. Although macrophages may be subjected to excess mechanical stress in these diseases, the way in which biomechanical forces affect macrophage function remains incompletely defined. Objective To investigate the molecular response to mechanical force in macrophages. Design and methods We used a DNA microarray with 1056 genes to describe the transcriptional profile of mechanically induced genes in human monocytic THP-1 cells. Mechanical deformation was applied to a thin and transparent membrane on which cells were cultured. After THP-1 cells were pre-incubated in the presence of phorbol 12-myristate 13-acetate (0.2 mumol/l) for 24 h, THP-1 cells attached to the membrane were subjected to biaxial mechanical strain. Interleukin-8 concentrations were determined using an enzyme-linked immunosorbent assay. Results In DNA microarray analysis, cyclic mechanical strain at 1 Hz induced only three genes more than 2.5-fold at 3 and 6 h in THP-1 cells: prostate apoptosis response-4 (3.0-fold at 3 h, 6.7-fold at 6 h), interleukin-8 (4.3-fold at 6 h) and the immediate-early response gene, IEX-1 (2.6-fold at 6 h). Real-time reverse transcriptase polymerase chain reaction analysis confirmed the amplitude-dependent induction of these three genes. In addition, mechanical strain increased interleukin-8 protein expression. Conclusion The present study demonstrates that human monocytic cells respond to mechanical deformation with induction of immediate-early and inflammatory genes. These findings suggest that mechanical stress in vivo, such as that associated with hypertension, may play an important part in atherogenesis and instability of coronary artery plaques, through biomechanical effects on vascular macrophages. J Hypertens 20:685-691 (C) 2002 Lippincott Williams Wilkins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据