4.1 Article

Timing is everything:: The effects of putative dopamine antagonists on metamorphosis vary with larval age and experimental duration in the prosobranch gastropod Crepidula fornicata

期刊

BIOLOGICAL BULLETIN
卷 202, 期 2, 页码 137-147

出版社

MARINE BIOLOGICAL LABORATORY
DOI: 10.2307/1543650

关键词

-

向作者/读者索取更多资源

The signal transduction pathway through which excess potassium ion stimulates the larvae of many marine invertebrates to metamorphose is incompletely understood. Recent evidence suggests that dopamine plays important roles in the metamorphic pathway of Crepidula fornicata. Therefore, we asked whether blocking dopamine receptors might prevent excess potassium ion from stimulating metamorphosis in this species. Surprisingly, the effects of the three putative dopamine antagonists tested (all at 10 muM) varied with exposure duration and the age of competent larvae, Chlorpromazine, a nonspecific dopamine antagonist known to have a number of other pharmacological effects, blocked the inductive action of excess potassium ion during the initial 5-8-h exposure periods in most assays, particularly for younger or smaller competent larvae. However, chlorpromazine in the absence of excess potassium ion also stimulated metamorphosis, particularly over the next 18 h, and worked faster on older competent larvae than on younger competent larvae. The specific D 1 antagonist R(+)-Sch-23309 had similar effects, blocking potassium-stimulated metamorphosis in short-term exposures and stimulating metamorphosis in longer exposures, particularly for older competent larvae. Although the specific D-2 antagonist spiperone (SPIP) blocked the inductive effects of excess potassium ion in only I of 6 assays during the first 6 h of exposure, it blocked metamorphosis in 2 of the assays during 24-h exposures. Our results indicate that dopan-line receptors are involved in the pathway through which excess potassium ion stimulates metamorphosis in C. fornicata. In addition, the largely latent inductive effects of chlorpromazine, an inhibitor of nitric oxide synthase, suggest that endogenous nitric oxide may play a natural role in inhibiting metamorphosis in this species. Overall, our results would then suggest that exposing larvae of C. fornicata to excess K+ leads to a shutdown of nitric oxide synthesis via a dopaminergic pathway, a pathway that can be blocked by some dopamine antagonists. Alternatively, chlorpromazine might eventually be stimulating metamorphosis by elevating endogenous cyclic nucleotide (e.g., cAMP) concentrations, again acting downstream from the steps acted on directly by excess K+.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据