4.8 Article Proceedings Paper

Networked solid oxide fuel cell stacks combined with a gas turbine cycle

期刊

JOURNAL OF POWER SOURCES
卷 106, 期 1-2, 页码 76-82

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0378-7753(01)01051-5

关键词

solid oxide fuel cell; combined cycles; multistage oxidation; mathematical modelling

向作者/读者索取更多资源

An improved design of fuel cells stacks arrangement has been suggested before for MCFC where reactant streams are ducted such that they are fed and recycled among multiple MCFC stacks in series. By networking fuel cell stacks, increased efficiency, improved thermal balance, and higher total reactant utilisation can be achieved. In this study, a combination of networked solid oxide fuel cell (SOFC) stacks and a gas turbine (GT) has been modelled and analysed. In such a combination, the stacks are operating in series with respect to the fuel flow. In previous studies conducted on hybrid SOFC/GT cycles by the authors, it was shown that the major part of the output of such cycles can be addressed to the fuel cell, In those studies, a single SOFC with parallel gas flows to individual cells were assumed. It can be expected that if the performance of the fuel cell is enhanced by networking, the overall system performance will improve. In the first part of this paper, the benefit of the networked stacks is demonstrated for a stand alone stack while the second part analyses and discusses the impact networking of the stacks has on the SOFC/GT system performance and design. For stacks with both reactant streams in series, a significant increase of system efficiency was found (almost 5% points), which, however, can be explained mainly by an improved thermal management. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据