4.6 Article

Bogoliubov theory of entanglement in a Bose-Einstein condensate

期刊

PHYSICAL REVIEW A
卷 65, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.65.043610

关键词

-

向作者/读者索取更多资源

We consider a Bose-Einstein condensate that is illuminated by a short resonant light pulse that coherently couples two internal states of the atoms. We show that the subsequent time evolution prepares the atoms in an interesting entangled state called a spin-squeezed state. This evolution is analyzed in detail by developing a Bogoliubov theory that describes the entanglement of the atoms. Our calculation is a consistent expansion in 1/rootN, where N is the number of particles in the condensate, and our theory predicts that it is possible to produce spin-squeezing by at least a factor of 1/rootN. Within the Bogoliubov approximation this result is independent of temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据