4.5 Article

5-S-cysteinyl-conjugates of catecholamines induce cell damage, extensive DNA base modification and increases in caspase-3 activity in neurons

期刊

JOURNAL OF NEUROCHEMISTRY
卷 81, 期 1, 页码 122-129

出版社

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1471-4159.2002.00808.x

关键词

caspase-3; DNA base modification; 5-S-cysteinyl-dopamine; Parkinson's disease; neurodegenerative disease

向作者/读者索取更多资源

A decrease in reduced glutathione levels in dopamine containing nigral cells in Parkinson's disease may result from the formation of cysteinyl-adducts of catecholamines, which in turn exert toxicity on nigral cells. We show that exposure of neurons (CSM 14.1) to 5-S-cysteinyl conjugates of dopamine, L-DOPA, DOPAC or DHMA causes neuronal damage, increases in oxidative DNA base modification and an elevation of caspase-3 activity in cells. Damage to neurons was apparent 12-48 h of post-exposure and there were increases in caspase-3 activity in neurons after 6 h. These changes were paralleled by large increases in pyrimidine and purine base oxidation products, such as 8-OH-guanine suggesting that 5-S-cysteinyl conjugates of catecholamines are capable of diffusing into cells and stimulating the formation of reactive oxygen species (ROS), which may then lead to a mechanism of cell damage involving caspase-3. Indeed, intracellular ROS were observed to rise sharply on exposure to the conjugates. These results suggest one mechanism by which oxidative stress may occur in the substantia nigra in Parkinson's disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据