4.7 Article

Correlated electrical conductivity and mechanical property analysis of high-density polyethylene filled with graphite and carbon fiber

期刊

POLYMER
卷 43, 期 8, 页码 2279-2286

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0032-3861(02)00043-5

关键词

high-density polyethylene; polymer composite; electrical conductivity

向作者/读者索取更多资源

The development of conductive polymer composites remains an important endeavor in light of growing energy concerns. In the present work, graphite (G), carbon fiber (CF) and G/CF mixtures are added to high-density polyethylene (HDPE) to discern if mixed fillers afford appreciable advantages over single fillers. The effects of filler type and composition on electrical conductivity, composite morphology and mechanical properties have been examined and correlated to establish structure-property relationships. The threshold loading levels required for G and CF to achieve measurable conductivity in HDPE have been identified. Addition of CF to HDPE/G composites is found to increase the conductivity relative to that of HDPE/G composites at the same filler concentration. This observed increase depends on CF length and becomes more pronounced at and beyond the threshold loading of the HDPE/G composite. Scanning electron microscopy is employed to elucidate the morphology of these multicomponent composites, whereas dynamic mechanical analysis reveals that filler concentration, composition and CF length impact both the magnitude and temperature dependence of the dynamic storage modulus. (C) 2002 Published by Elsevier Science Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据