4.8 Article

c-fos regulates neuronal excitability and survival

期刊

NATURE GENETICS
卷 30, 期 4, 页码 416-420

出版社

NATURE AMERICA INC
DOI: 10.1038/ng859

关键词

-

向作者/读者索取更多资源

Excitotoxicity is a process in which glutamate or other excitatory amino acids induce neuronal cell death. Accumulating evidence suggests that excitotoxicity may contribute to human neuronal cell loss caused by acute insults and chronic degeneration in the central nervous system(1-4). The immediate early gene (IEG) c-fos encodes a transcription factor(5-6). The c-Fos proteins form heterodimers with Jun family proteins, and the resulting AP-1 complexes regulate transcription by binding to the AP-1 sequence found in many cellular genes(7-9). Emerging evidence suggests that c-fos is essential in regulating neuronal cell survival versus death(10). Although c-fos is induced by neuronal activity, including kainic acid induced seizures(11-14), whether and how c-fos is involved in excitotoxicity is still unknown. To address this issue, we generated a mouse in which c-fos expression is largely eliminated in the hippocampus. We found that these mutant mice have more severe kainic acid-induced seizures, increased neuronal excitability and neuronal cell death, compared with control mice. Moreover, c-Fos regulates the expression of the kainic acid receptor GluR6 and brain-derived neurotrophic factor (BDNF), both in vivo and in vitro. Our results suggest that c-fos is a genetic regulator for cellular mechanisms mediating neuronal excitability and survival.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据