3.8 Article

The effect of salinity and CO2 enrichment on the growth and anatomy of the second trifoliate leaf of Phaseolus vulgaris

出版社

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/B02-018

关键词

CO2 enrichment; leaf growth; leaf anatomy; Phaseolus vulgaris; salinity

向作者/读者索取更多资源

The effect of CO2 and NaCl on the second trifoliate leaf of Phaseolus vulgaris L. was studied. Salt reduced leaf area and volume. Volume density of the palisade mesophyll was increased and that of the intercellular spaces and abaxial epidermis was reduced. Salt increased the numbers of epidermal and palisade cells per unit area and the stomatal density of the abaxial epidermis but reduced the numbers of cells per leaf. Salt reduced stomatal indices of both epidermal surfaces, cell volumes, relative leaf expansion rate, leaf plastochron index, leaf fresh and dry weights, and specific leaf area. Elevated CO2 increased leaf area and volume, reduced the density of epidermal and palisade cells and increased fresh and dry weights. Cell areas and volumes of epidermal and palisade cells, but not stomates, were increased. Elevated CO2 partially overcame some salinity effects such as leaf area, volume, specific leaf area, and relative leaf expansion rate. Leaf fresh and dry weights, leaf volume, palisade and spongy mesophyll tissue volume, and the numbers of palisade and epidermal cells per leaf equalled controls. Under high CO2, epidermal and intercellular space volume, cell areas, stomatal index, and the volume density of intercellular spaces and abaxial epidermis were reduced, and the volume density of the palisade mesophyll increased. Leaf thickness, palisade cell length and volume, volume density of spongy mesophyll, and succulence were greater than controls in salt and high-CO2 leaves. High CO2 had more effect on salt-stressed than unstressed plants in leaf weight, thickness, and cell volume.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据