4.6 Article

A principal role for the proteasome in endoplasmic reticulum-associated degradation of misfolded intracellular cystic fibrosis transmembrane conductance regulator

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 14, 页码 11709-11714

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111958200

关键词

-

资金

  1. NIDDK NIH HHS [R01 DK43994] Funding Source: Medline

向作者/读者索取更多资源

Endoplasmic reticulum-associated degradation of misfolded cystic fibrosis transmembrane conductance regulator (CFTR) protein is known to involve the ubiquitin-proteasome system. In addition, an ATP-independent proteolytic system has been suggested to operate in parallel with this pathway and become up-regulated when proteasomes are inhibited (Jensen, T. J., Loo, M. A., Pind, S., Williams, D. B., Goldberg, A. L., and Riordan, J. R. (1995) Cell 83, 129-135). In this study, we use two independent techniques, pulse-chase labeling and a noninvasive fluorescence cell-based assay, to investigate the proteolytic pathways underlying the degradation of misfolded CFTR. Here we report that only inhibitors of the proteasome have a significant effect on preventing the degradation of CFTR, whereas cell-permeable inhibitors of lysosomal degradation, autophagy, and several classes of protease had no measurable effect on CFTR degradation, when used either alone or in combination with the specific proteasome inhibitor carbobenzoxy-L-leucyl-leucyl-L-leucinal (MG132). Our results suggest that ubiquitin-proteasome-mediated degradation is the dominant pathway for disposal of misfolded CFTR in mammalian cells and provide new mechanistic insight into endoplasmic reticulum-associated degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据