4.5 Article

Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2001GC000200

关键词

Mg/Ca; planktonic foraminifera; calibration; 4267 oceanography : general : paleoceanography; 3030 marine geology and geophysics : micropaleontology

向作者/读者索取更多资源

[1] Optimal use of Mg/Ca as a paleotemperature proxy requires establishing calibrations for different species of foraminifera and quantifying the influence of dissolution. To achieve this goal, we have measured Mg/Ca and delta(18)O in a series of tropircal and subtropical core tops, including four depth transects: the Ceara Rise, the Sierra Leone Rise, and the Rio Grande Plateau in the Atlantic, and the Ontong Java Plateau in the Pacific, focusing on spinose mixed layer dwelling species Globigerinoides ruber and Globigerinoides sacculifer, and nonspinose thermocline dwelling Neogloboquadrina dutertrei. Shell Mg/Ca in G. sacculifer is 5-15% lower than in G. ruber, while N. dutertrei Mg/Ca is 49-55% lower than in G. ruber. This statistically significant offset has allowed us to establish different calibrations for each species. Multilinear regression analysis was used to develop calibration equations that include a correction term for the dissolution effect on Mg/Ca in foraminiferal calcite. Presented in this paper are two sets of calibrations; one set using core depth as a dissolution correction and another using DeltaCO(3)(2-) as a dissolution parameter. The calibrations suggest that G. ruber is the most accurate recorder of surface temperature, while G. sacculifer records temperatures below the surface at 20-30 m. The depth habitat of N. dutertrei is more uncertain, owing to the wide range in habitat depths depending on hydrographic conditions, but on average, Mg/Ca and delta(18)O data suggest it is at similar to50 m. Of the three species, N. dutertrei is the most sensitive to dissolution (up to 23% decrease in shell Mg/Ca per km), while G. sacculifer is the most resistant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据