4.7 Article

The ghost of Sagittarius and lumps in the halo of the Milky Way

期刊

ASTROPHYSICAL JOURNAL
卷 569, 期 1, 页码 245-274

出版社

IOP PUBLISHING LTD
DOI: 10.1086/338983

关键词

Galaxy : halo; Galaxy : structure

向作者/读者索取更多资源

We identify new structures in the halo of the Milky Way from positions, colors, and magnitudes of five million stars detected in the Sloan Digital Sky Survey. Most of these stars are within 1.degrees26 of the celestial equator. We present color-magnitude diagrams (CMDs) for stars in two previously discovered, tidally disrupted structures. The CMDs and turnoff colors are consistent with those of the Sagittarius dwarf galaxy, as had been predicted. In one direction, we are even able to detect a clump of red stars, similar to that of the Sagittarius dwarf, from stars spread across 110 deg(2) of sky. Focusing on stars with the colors of F turnoff objects, we identify at least five additional overdensities of stars. Four of these may be pieces of the same halo structure, which would cover a region of the sky at least 40 in diameter, at a distance of 11 kpc from the Sun (18 kpc from the center of the Galaxy). The turnoff is significantly bluer than that of thick-disk stars, yet the stars lie closer to the Galactic plane than a power-law spheroid predicts. We suggest two models to explain this new structure. One possibility is that this new structure could be a new dwarf satellite of the Milky Way, hidden in the Galactic plane and in the process of being tidally disrupted. The other possibility is that it could be part of a disklike distribution of stars which is metal-poor, with a scale height of approximately 2 kpc and a scale length of approximately 10 kpc. The fifth overdensity, which is 20 kpc away, is some distance from the Sagittarius dwarf streamer orbit and is not associated with any known Galactic structure. We have tentatively identified a sixth overdensity in the halo. If this sixth structure is instead part of a smooth distribution of halo stars (the spheroid), then the spheroid must be very flattened, with axial ratio q = 0.5. It is likely that there are many smaller streams of stars in the Galactic halo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据