4.5 Article

Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow

期刊

PHYSIOLOGICAL GENOMICS
卷 9, 期 1, 页码 27-41

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/physiolgenomics.00075.2001

关键词

shear stress; disturbed flow; microarray; atherosclerosis; endothelium

向作者/读者索取更多资源

Subtraction cloning and cDNA arrays were used to compare steady-state mRNA levels in cultured human aortic endothelial cells (HAEC) exposed for up to 24 h to either high-shear (13 dyn/cm(2)) steady laminar flow (LF), an established representation of atheroprotective flow conditions, or low-shear (<1 dyn/cm(2)), pulsatile, nonsteady, non-unidirectional flow (disturbed flow, DF) that simulates conditions in the atherosclerosis-prone areas of the arterial circulation. More than 100 genes not previously known to be flow regulated were identified. Analysis of selected genes by quantitative RT-PCR confirmed the results obtained from the microarrays. These data demonstrate that DF is not simply the absence of LF but in fact represents a distinct biomechanical stimulus that has a profound impact upon the gene expression profile of HAEC in culture. In line with previous studies, many of the changes in mRNA levels induced by LF are atheroprotective. In contrast, DF upregulated the mRNA levels of a plethora of proatherosclerotic genes including proinflammatory, proapoptotic, and procoagulant molecules. For some of the genes whose expression was altered by DF and LF, corresponding changes in EC function (proliferation and monocyte adhesion) could be demonstrated. Specifically, the sustained up-regulation of VCAM-1 and increased monocyte adhesion to EC exposed to DF was similar to that found in EC in vivo at atherosclerosis-prone regions, confirming the relevance of our model system for in vivo conditions. Distinct differences in the cellular response induced by TNF alpha and DF suggest that the effects of DF are not mediated entirely by the same signaling pathways that activate NF-kappa B. These studies demonstrate extensive and pathophysiologically relevant changes in sustained gene expression patterns in aortic EC exposed to DF compared with LF which are predicted to induce a proatherogenic EC phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据