4.6 Article

Electronic band structure of isolated and bundled carbon nanotubes -: art. no. 155411

期刊

PHYSICAL REVIEW B
卷 65, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.65.155411

关键词

-

向作者/读者索取更多资源

We study the electronic dispersion in chiral and achiral isolated nanotubes as well as in carbon nanotube bundles. The curvature of the nanotube wall is found not only to reduce the band gap of the tubes by hybridization, but also to alter the energies of the electronic states responsible for transitions in the visible energy range. Even for nanotubes with larger diameters (1-1.5 nm) a shift of the energy levels of approximate to100 meV is obtained in our ab initio calculations. Bundling of the tubes to ropes results in a further decrease of the energy gap in semiconducting nanotubes; the bundle of (10,0) nanotubes is even found to be metallic. The intratube dispersion, which is on the order of 100 meV, is expected to significantly broaden the density of states and the optical absorption bands in bundled tubes. We compare our results to scanning tunneling microscopy and Raman experiments, and discuss the limits of the tight-binding model including only pi orbitals of graphene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据