4.6 Article

Band structure computations of metallic photonic crystals with the multiple multipole method

期刊

PHYSICAL REVIEW B
卷 65, 期 15, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.65.155120

关键词

-

向作者/读者索取更多资源

A method for the computation of the band structure of two-dimensional photonic crystals is presented. It is well suited for crystals including materials with arbitrary frequency-dependent dielectric constants. The technique can be applied to study photonic crystals with irregularly shaped (noncircular) elements. This method is based on the multiple multipole method. In order to find the solutions of the nonlinear eigenvalue problem, a multipolar source is introduced which acts as an excitation. By varying the frequency of the source, the various eigenmodes are excited and can be localized as resonances in an appropriately chosen function. The approach is demonstrated for two systems with different geometries: a square lattice of circular cross-section cylinders, and a triangular lattice of triangular cross-section cylinders. The case of metallic systems in H polarization, where surface plasmons may be excited, is chosen. The localized nature of the surface modes poses problems to other methods whereas the eigenvalues and eigenmodes are accurately computed with the proposed technique.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据