4.8 Article

Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.072089599

关键词

amino acids; charged and hydrophobic residues; nonlipid surfactants; simplicity to complexity; prebiotic enclosures

向作者/读者索取更多资源

Several surfactant-like peptides undergo self-assembly to form nanotubes and nanovesicles having an average diameter of 30-50 nm with a helical twist. The peptide monomer contains 7-8 residues and has a hydrophilic head composed of aspartic acid and a tail of hydrophobic amino acids such as alanine, valine, or leucine. The length of each peptide is approximate to2 nm, similar to that of biological phospholipids. Dynamic light-scattering studies showed structures with very discrete sizes. The distribution becomes broader over time, indicating a very dynamic process of assembly and disassembly. Visualization with transmission electron microscopy of quick-freeze/deep-etch sample preparation revealed a network of open-ended nanotubes and some vesicles, with the latter being able to fuse and bud out of the former. The structures showed some tail sequence preference. Many three-way junctions that may act as links between the nanotubes have been observed also. Studies of peptide surfactant molecules have significant implications in the design of nonlipid biological surfactants and the understanding of the complexity and dynamics of the self-assembly processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据