4.6 Article

Organic electrical bistable devices and rewritable memory cells

期刊

APPLIED PHYSICS LETTERS
卷 80, 期 16, 页码 2997-2999

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1473234

关键词

-

向作者/读者索取更多资源

Electrical bistability is a phenomenon in which a device exhibits two states of different conductivities, at the same applied voltage. We report an organic electrical bistable device (OBD) comprising of a thin metal layer embedded within the organic material, as the active medium [L. P. Ma, J. Liu, and Y. Yang, US Patent Pending, (2001)]. The performance of this device makes it attractive for memory-cell type of applications. The two states of the OBD differ in their conductivity by several orders in magnitude and show remarkable stability, i.e., once the device reaches either state, it tends to remain in that state for a prolonged period of time. More importantly, the high and low conductivity states of an OBD can be precisely controlled by the application of a positive voltage pulse (to write) or a negative voltage pulse (to erase), respectively. One million writing-erasing cycles for the OBD have been tested in ambient conditions without significant device degradation. These discoveries pave the way for newer applications, such as low-cost, large-area, flexible, high-density, electrically addressable data storage devices. (C) 2002 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据