4.6 Article

Neutrophil-derived glutamate regulates vascular endothelial barrier function

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 17, 页码 14801-14811

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110557200

关键词

-

资金

  1. NHLBI NIH HHS [HL60569/DE13499, HL-52866, HL-03854, F32-HL103870] Funding Source: Medline

向作者/读者索取更多资源

Endothelial barrier function is altered by the release of soluble polymorphonuclear leukocyte (PMN)-derived mediators during inflammatory states. However, endogenous pathways to describe such changes are only recently appreciated. Using an in vitro endothelial paracellular permeability model, cell-free supernatants from formylmethionylleucylphenylalanine-stimulated PMNs were observed to significantly alter endothelial permeability. Biophysical and biochemical analysis of PMN supernatants identified PMN-derived glutamate in modulating endothelial permeability. Furthermore, novel expression of metabotropic glutamate receptor 1 (mGluR1), mGluR4, and mGluR5 by human brain and dermal microvascular endothelial cells was demonstrated by reverse transcription-PCR, in situ hybridization, immunofluorescence, and Western blot analysis. Treatment of human brain endothelia with glutamate or selective, mGluR group I or III agonists resulted in a time-dependent loss of phosphorylated vasodilator-stimulated phosphoprotein (VASP) and significantly increased endothelial permeability. Glutamate-induced decreases in brain endothelial barrier function and phosphorylated VASP were significantly attenuated by pretreatment of human brain endothelia with selective mGluR antagonists. These observations were extended to an in vivo hypoxic mouse model in which pretreatment with mGluR antagonists significantly decreased fluorescein isothiocyanate-dextran flux across the blood-brain barrier. We conclude that activated human PMNs release glutamate and that endothelial expression of group I or III mGluRs function to decrease human brain endothelial VASP phosphorylation and barrier function. These results identify a novel pathway by which PMN-derived glutamate may regulate human endothelial barrier function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据