4.2 Article

Corticospinal tract transection prevents operantly conditioned H-reflex increase in rats

期刊

EXPERIMENTAL BRAIN RESEARCH
卷 144, 期 1, 页码 88-94

出版社

SPRINGER
DOI: 10.1007/s00221-002-1026-8

关键词

spinal cord injury; dorsal column; lateral column; plasticity; learning

资金

  1. NICHD NIH HHS [HD 36020] Funding Source: Medline
  2. NINDS NIH HHS [NS 22189] Funding Source: Medline

向作者/读者索取更多资源

Operant conditioning of the H-reflex, the electrical analog of the spinal stretch reflex, in freely moving rats is a relatively simple model for studying long-term supraspinal control over spinal cord function. Motivated by food reward, rats can gradually increase (i.e., up-condition) or decrease (i.e., down-condition) the soleus H-reflex. Earlier work showed that corticospinal tract transection prevents acquisition and maintenance of H-reflex down-conditioning while transection of other major spinal cord tracts does not. This study explores the effects on acquisition of up-conditioning of the right soleus H-reflex of mid-thoracic transection of: the right lateral column (LC, five rats) (containing the rubrospinal, vestibulospinal, and reticulospinal tracts); the entire dorsal column (DC, six rats) [containing the main corticospinal tract (CST) and the dorsal ascending tract (DA)]; the CST alone (five rats); or the DA alone (seven rats). After initial (i.e., control) H-reflex amplitude was determined, the rat was exposed for 50 days to the up-conditioning mode in which reward was given when the H-reflex was above a criterion value. H-reflex amplitude at the end of up-conditioning was compared to initial H-reflex amplitude. An increase greater than or equal to20% was defined as successful up-conditioning. In intact rats, H-reflex amplitude at the end of up-conditioning, averaged 164% (+/-10%, SE), and 81% were successful. In the present study, LC and DA rats were similar to intact rats in final H-reflex amplitude and percent successful. In contrast, results for DC and CST rats were significantly different from those of intact rats. In the six DC rats, final H-reflex amplitude averaged 105% (+/-3)% of control and none was successful; and in the five CST rats, final H-reflex amplitude averaged 94% (+/-3)% and none was successful. The results indicate that the main CST, located in the dorsal column, is essential for H-reflex up-conditioning as it is for down-conditioning, while the dorsal column ascending tract and the ipsilateral lateral column (containing the main rubrospinal, vestibulospinal, and reticulospinal tracts) do not appear to be essential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据