4.0 Article

A native dasyurid predator (common planigale, Planigale maculata) rapidly learns to avoid a toxic invader

期刊

AUSTRAL ECOLOGY
卷 33, 期 7, 页码 821-829

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1442-9993.2008.01847.x

关键词

invasive species; predator learning; taste aversion; toxic prey

类别

资金

  1. Australian Research Council
  2. University of Sydney Animal Care and Ethics Committee [L04/3-2006/3/4288]
  3. Northern Territory Parks and Wildlife Commission

向作者/读者索取更多资源

Interactions between invasive species and native fauna afford a unique opportunity to examine interspecific encounters as they first occur, without the complications introduced by coevolution. In northern Australia, the continuing invasion of the highly toxic cane toad Bufo marinus poses a threat to many frog-eating predators. Can predators learn to distinguish the novel toxic prey item from native prey (and thus, avoid being poisoned), or are longer-term genetically based changes to attack behaviour needed before predators can coexist with toads? To predict the short-term impact of cane toads on native predators, we need to know the proportion of individuals that will attack toads, the proportion surviving the encounter, and whether surviving predators learn to avoid toads. We quantified these traits in a dasyurid (common planigale, Planigale maculata) that inhabits tropical floodplains across northern Australia. Although 90% of naive planigales attacked cane toads, 83% of these animals survived because they either rejected the toad unharmed, or killed and consumed the prey snout-first (thereby avoiding the toxin-laden parotoid glands). Most planigales showed one-trial learning and subsequently refused to attack cane toads for long time periods (up to 28 days). Toad-exposed planigales also avoided native frogs for up to 9 days, thereby providing an immediate benefit to native anurans. However, the predators gradually learnt to use chemical cues to discriminate between frogs and toads. Collectively, our results suggest that generalist predators can learn to distinguish and avoid novel toxic prey very rapidly - and hence, that small dasyurid predators can rapidly adapt to the cane toad invasion. Indeed, it may be feasible to teach especially vulnerable predators to avoid cane toads before the toads invade, by deploying low-toxicity baits that stimulate taste-aversion learning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据