4.7 Article

Solid-state (1H and 13C) nuclear magnetic resonance spectroscopy of insoluble organic residue in the Murchison meteorite:: A self-consistent quantitative analysis

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 66, 期 10, 页码 1851-1865

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0016-7037(01)00888-2

关键词

-

向作者/读者索取更多资源

Complementary, double- and single-resonance solid-state (H-1 and C-13) nuclear magnetic resonance (NMR) experiments were performed on a solvent extracted and demineralized sample of Murchison meteorite organic macromolecule. These NMR data provide a consistent picture of a complex organic solid composed of a wide range of organic (aromatic and aliphatic) functional groups, including numerous oxygen-containing functional groups. The fraction of aromatic carbon within the Murchison organic residue (constrained by three independent experiments) lies between 0.61 and 0.66. The close similarity in cross-polarized and single-pulse spectra suggests that both methods detect the same distribution of carbon. With the exception of interstellar diamond (readily detected in slow magic angle spinning single-pulse NMR experiments), there is no evidence in the solid-state NMR data for a significant abundance of large laterally condensed aromatic molecules in the Murchison organic insoluble residue. Given the most optimistic estimation, such carbon would not exceed 10%, and more likely is a fraction of this maximum estimate. The fraction of aromatic carbon directly bonded to hydrogen is low (similar to30%), indicating that the aromatic molecules in the Murchison organic residue are highly substituted. The bulk hydrogen content, H/C, derived from NMR data, ranges from a low of 0.53 +/- 0.06 and a high of 0.63 +/- 0.06. The hydrogen content (H/C) determined via elemental analysis is 0.53. The range of oxygen-containing organic functionality in the Murchison is substantial. Depending on whether various oxygen-containing organic functional groups exist as free acids and hydroxyls or are linked as esters and ethers results in a wide range in O/C (0.22 to 0.37). The lowest values are more consistent with elemental analyses, requiring that oxygen-containing functional groups in the Murchison macromolecule are highly linked. The combined H-1 and C-13 NMR data reveal a high proportion of methine carbon, which requires that carbon chains within the Murchison organic macromolecule are highly branched. Copyright (C) 2002 Elsevier Science Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据