4.7 Article Proceedings Paper

A minimum description length approach to statistical shape modeling

期刊

IEEE TRANSACTIONS ON MEDICAL IMAGING
卷 21, 期 5, 页码 525-537

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMI.2002.1009388

关键词

active shape models; automatic landmarking; correspondence problem; minimum description length (MDL); point distribution models; statistical shape modeling

向作者/读者索取更多资源

We describe a method for automatically building statistical shape models from a training set of example boundaries/surfaces. These models show considerable promise as a basis for segmenting and interpreting images. One of the drawbacks of the approach is, however, the need to establish a set of dense correspondences between all members of a set of training shapes. Often this is achieved by locating a set of landmarks manually on each training image, which is time consuming and subjective in two dimensions and almost impossible in three dimensions. We describe how shape models can be built automatically by posing the correspondence problem as one of finding the parameterization for each shape in the training set. We select the set of parameterizations that build the best model. We define best as that which minimizes the description length of the training set, arguing that this leads to models with good compactness, specificity and generalization ability. We show how a set of shape parameterizations can be represented and manipulated in order to build a minimum description length model. Results are given for several different training sets of two-dimensional boundaries, showing that the proposed method constructs better models than other approaches including manual landmarking-the current gold standard. We also show that the method can be extended straightforwardly to three dimensions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据