4.3 Article

Optical remote sensing of sound in the ocean

期刊

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.JRS.9.096038

关键词

lidar; oceanography; remote sensing; acoustics; bubbles

资金

  1. U.S. Navy

向作者/读者索取更多资源

We propose a remote sensing technique to measure sound in the upper ocean. The objective is a system that can be flown on an aircraft. Conventional acoustic sensors are ineffective in this application, because almost none (similar to 0.1%) of the sound in the ocean is transmitted through the water/air interface. The technique is based on the acoustic modulation of naturally occurring bubbles near the sea surface. It is clear from the ideal gas law that the volume of a bubble will decrease if the pressure is increased, as long as the number of gas molecules and temperature remain constant. The pressure variations associated with the acoustic field will therefore induce proportional volume fluctuations of the insonified bubbles. The lidar return from a collection of bubbles is proportional to the total void fraction, independent of the bubble size distribution. This implies that the lidar return from a collection of insonified bubbles will be modulated at the acoustic frequencies, independent of the bubble size distribution. Moreover, that modulation is linearly related to the sound pressure. A laboratory experiment confirmed the basic principles, and estimates of signal-to-noise ratio suggest that the technique will work in the open ocean. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据