4.2 Article

Dry heath arctic tundra responses to long-term nutrient and light manipulation

期刊

ARCTIC ANTARCTIC AND ALPINE RESEARCH
卷 34, 期 2, 页码 211-218

出版社

INST ARCTIC ALPINE RES
DOI: 10.2307/1552473

关键词

-

向作者/读者索取更多资源

Long-term fertilization dramatic responses of ecosystem properties. studies in several arctic ecosystems have demonstrated plant community structure with concomitant changes in Although these results are well documented in moist tussock and wet sedge tundra, dry heath tundra has been less studied. In an Alaskan dry heath arctic tundra, we conducted a biomass harvest of plants that received additional nitrogen (N, 10 g m(-2) yr(-1)) and/or phosphorus (P, 5 g m(-2) yr(-1)) or reduced light (50% of ambient) for 8 yr. We expected responses to be similar to those of other arctic tundra communities with increased biomass resulting from added nutrients and species responding individualistically to generate the community-level response. However, total vascular biomass did not change in the dry heath tundra in response to any treatment, although individual species and functional group biomass differed from controls. Aboveground productivity, estimated using new apical growth, significantly increased in the N and N+P plots caused by significantly greater abundance of a tussock-forming grass, Hierochloe alpina. The lowest species richness was recorded in the N alone plots, where a deciduous shrub, Betula nana, had its greatest biomass, and richness also declined in N+P plots. Plots that received P alone had similar biomass and species richness to controls, although shrubs decreased in abundance. The shade treatment caused minor biomass differences, marginally less new apical growth, and slightly lower species richness compared to control plots. These results were similar to several ongoing studies in Alaskan moist tussock and wet sedge tundras where aboveground productivity increased in response to added N and/or P but biomass response lagged. This shift in the dry heath tundra from an evergreen shrub to a grass dominated system in the N and N+P plots may cause profound ecosystem function changes as woody biomass capable of long-term carbon storage is lost.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据