4.6 Article

Gadolinium chloride pretreatment prevents cadmium chloride-induced liver damage in both wild-type and MT-null mice

期刊

TOXICOLOGY AND APPLIED PHARMACOLOGY
卷 180, 期 3, 页码 178-185

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/taap.2002.9385

关键词

cadmium; liver; hepatotoxicity; necrosis; gadolinium chloride; metallothionein; MT-null

资金

  1. NIEHS NIH HHS [ES-01142, ES-07079] Funding Source: Medline

向作者/读者索取更多资源

The heavy metal cadmium (Cd) causes hepatotoxicity upon acute administration. Kupffer cells, the resident macrophages of the liver, have been suggested to play a role in Cd-induced hepatotoxicity. Gadolinium chloride (GdCl3) may prevent Cd-induced hepatotoxicity by suppressing Kupffer cells. However, GdCl3 also induces the Cd-binding protein, metallothionein (NIT). Therefore, this study was conducted to determine whether GdCl3 prevents Cd-induced hepatotoxicity via the induction of MT. Hepatic NIT and Kupffer cell counts were analyzed 24 h after wild-type (WT) mice were administered saline or 10, 30, or 60 mg GdCl3/kg. GdCl3 induced MT in a dose-dependent manner without affecting nonprotein sulfhydryl content. All examined doses of GdCl3 were effective at eliminating Kupffer cells from the liver. To examine the hepatoprotective effects of GdCl3, WT and MT-null mice were pretreated with saline or 10, 30, or 60 mg GdCl3 24 h prior to a hepatotoxic dose of Cd (2.5 mg Cd/kg). Blood and livers were removed 16 h later and analyzed for hepatotoxicity as well as NIT, Cd, and Kupffer cell content. Hepatotoxicity was alleviated in both WT and MT-null mice that were pretreated with 30 or 60 mg GdCl3/kg, indicating that MT induction is not required for the hepatoprotective effects of GdCl3. Hepatic Cd content was not decreased by GdCl3, demonstrating that GdCl3 does not negatively affect Cd distribution to the liver. Kupffer cells were depleted at all three doses of GdCl3, whereas hepatoprotection was only observed at doses of 30 and 60 mg GdCl3/kg. This does not rule out Kupffer cells in the mechanism of Cd-induced hepatotoxicity, but it does suggest that GdCl3 exerts hepatoprotective effects on the liver aside from depleting Kupffer cells. In summary, these data substantially rule out NIT induction and decrease the importance of Kupffer cells as mechanisms of GdCl3-induced protection from Cd-induced hepatotoxicity. (C) 2002 Elsevier Science (USA).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据