4.1 Article

Transposable elements and the evolution of genome size in eukaryotes

期刊

GENETICA
卷 115, 期 1, 页码 49-63

出版社

SPRINGER
DOI: 10.1023/A:1016072014259

关键词

genome size; molecular evolution; transposable element

向作者/读者索取更多资源

It is generally accepted that the wide variation in genome size observed among eukaryotic species is more closely correlated with the amount of repetitive DNA than with the number of coding genes. Major types of repetitive DNA include transposable elements, satellite DNAs, simple sequences and tandem repeats, but reliable estimates of the relative contributions of these various types to total genome size have been hard to obtain. With the advent of genome sequencing, such information is starting to become available, but no firm conclusions can yet be made from the limited data currently available. Here, the ways in which transposable elements contribute both directly and indirectly to genome size variation are explored. Limited evidence is provided to support the existence of an approximately linear relationship between total transposable element DNA and genome size. Copy numbers per family are low and globally constrained in small genomes, but vary widely in large genomes. Thus, the partial release of transposable element copy number constraints appears to be a major characteristic of large genomes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据