4.6 Article

Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle:: implications for insect resistance to Bacillus thuringiensis toxins

期刊

INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY
卷 32, 期 5, 页码 567-577

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0965-1748(01)00137-0

关键词

Colorado potato beetle; Bacillus thuringiensis; Cry3Aa; protease; resistance

向作者/读者索取更多资源

Widespread commercial use of Bacillus thuringiensis Cry toxins to control pest insects has increased the likelihood for development of insect resistance to this entomopathogen. In this study, we investigated protease activity profiles and toxin-binding capacities in the midgut of a strain of Colorado potato beetle (CPB) that has developed resistance to the Cry3Aa toxin of B. thuringiensis subsp. tenebrionis. Histological examination revealed that the structural integrity of the midgut tissue in the toxin-resistant (R) insect was retained whereas the same tissue was devastated by toxin action in the susceptible (S) strain. Function-based activity profiling using zymographic gels showed specific proteolytic bands present in midgut extracts and brush border membrane vesicles (BBMV) of the R strain not apparent in the S strain. Aminopeptidase activity associated with insect midgut was higher in the R strain than in the S strain. Enzymatic processing of toxin did not differ in either strain and, apparently, is not a factor in resistance. BBMV from the R strain bound similar to60% less toxin than BBMV from the S strain, whereas the kinetics of toxin saturation of BBMV was 30 times less in the R strain than in the S strain. However, homologous competition inhibition binding of I-125-Cry3Aa to BBMV did not reveal any differences in binding affinity (K(d)similar to0.1 muM) between the S and R strains. The results indicate that resistance by the CPB to the Cry3Aa toxin correlates with specific alterations in protease activity in the midgut as well as with decreased toxin binding. We believe that these features reflect adaptive responses that render the insect refractory to toxin action, making this insect an ideal model to study host innate responses and adaptive changes brought on by bacterial toxin interaction. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据